Лапласа оператор - определение. Что такое Лапласа оператор
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Лапласа оператор - определение

Лапласиан; Лапласа оператор; ∆
Найдено результатов: 141
Лапласа оператор         

лапласиан, дельта-оператор, Δ-оператор, линейный дифференциальный Оператор, который функции φ(x1, x2,..., xn) от n переменных x1, x2,..., xn ставит в соответствие функцию

Δφ = .

В частности, для функции φ(x, y) двух переменных х, у Л. о. имеет вид

Δφ = ,

а для функций одной переменной φ(x) Л. о. совпадает с оператором второй производной

Δφ = .

Л. о. встречается в тех задачах математической физики, где изучаются свойства изотропной однородной среды (распространение света, тепла, движение идеальной несжимаемой жидкости и т.п.).

Уравнение Δφ = 0 обычно называется Лапласа уравнением; отсюда и произошло название Л. о.

ЛАПЛАСА ОПЕРАТОР         
линейный дифференциальный оператор, который функции ?(x, y, z) ставит в соответствие функциюВстречается во многих задачах математической физики (распространение света, тепла, движение идеальной несжимаемой жидкости). Уравнение ???0 называется Лапласа уравнением.
Оператор Лапласа         
Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом \ \Delta. Функции F\ он ставит в соответствие функцию
Оператор Лапласа — Бельтрами         
Опера́тор Лапла́са — Бельтра́ми (называется иногда оператором Бельтра́ми — Лапла́са или просто оператором Бельтра́ми) — дифференциальный оператор второго порядка, действующий в пространстве гладких (или аналитических) функций на римановом многообразии M.
Дискретный оператор Лапласа         
В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.
Преобразование Лапласа         
ИНТЕГРАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, ОБОБЩЕНИЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ
Обратное преобразование Лапласа; Лапласа преобразование; Одностороннее Преобразование Лапласа; Дискретное преобразование Лапласа; ℒ; Одностороннее преобразование Лапласа; Интеграл Бромвича
Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию \ F(s) комплексного переменного (изображение) с функцией \ f(x) вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.
Лапласа уравнение         
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение

дифференциальное уравнение с частными производными

где х, у, z - независимые переменные, а u = u(x, y, z) - искомая функция. Это уравнение названо по имени П. Лапласа, рассмотревшего его в работах по теории тяготения (1782). К Л. у. приводит ряд задач физики и техники. Л. у. удовлетворяют температура при стационарных процессах, потенциал электростатического поля в точках пространства, свободных от зарядов, потенциал поля тяготения в области, не содержащей притягивающих масс, и т. п. Функции, удовлетворяющие Л. у., называются гармоническими функциями (См. Гармонические функции). О постановке задач для Л. у. см. в ст. Краевые задачи.

Уравнение Лапласа         
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ВТОРОГО ПОРЯДКА
Лапласа уравнение
Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:
Оператор (физика)         
Оператор в квантовой механике — это линейное отображение, которое действует на волновую функцию, являющуюся комплекснозначной функцией, дающей наиболее полное описание состояния системы. Операторы обозначаются большими латинскими буквами с циркумфлексом наверху.
Операторы         
НЕКОТОРЫЙ КЛАСС ОТОБРАЖЕНИЙ В МАТЕМАТИКЕ
Тождественный оператор; Операторы; Нулевой оператор

в квантовой теории, математическое понятие, широко используемое в математическом аппарате квантовой механики (См. Квантовая механика) и квантовой теории поля (См. Квантовая теория поля) и служащее для сопоставления определённому вектору состояния (или волновой функции) ψ др. определённых векторов (функций) ψ'. Соотношение между ψ и ψ' записывается в виде ψ' = L̂ψ, где L̂ - оператор. В квантовой механике физическим величинам (координате, импульсу, моменту количества движения, энергии и т.д.) ставятся в соответствие О. L̂ (О. координаты, О. импульса и т.д.), действующие на вектор состояния (или волновую функцию) ψ, т. е. на величину, описывающую состояние физической системы.

Простейшие виды О., действующих на волновую функцию ψ(х) (где х - координата частицы), - О. умножения (например, О. координаты ,ψ = хψ) и о. дифференцирования (например, О. импульса , ψ =, где i - мнимая единица, ħ - постоянная Планка). Если ψ - вектор, компоненты которого можно представить в виде столбца чисел, то О. представляет собой квадратную таблицу - матрицу (См. Матрица).

В квантовой механике в основном используются линейные операторы (См. Линейный оператор). Это означает, что они обладают следующим свойством: если L̂ψ1 = ψ'1 и L̂ψ2 = ψ'2, то L̂(c1ψ1 + c2ψ2) = c1ψ'1 + c2ψ'2, где c1 и с2 - комплексные числа. Это свойство отражает Суперпозиции принцип - один из основных принципов квантовой механики.

Существенные свойства О. L̂ определяются уравнением L̂ψn = λnψn, где λn - число. Решения этого уравнения ψn называется собственными функциями (собственными векторами) оператора L̂. Собственные волновые функции (собственные векторы состояния) описывают в квантовой механике такие состояния, в которых данная физическая величина L имеет определённое значение λn. Числа λn называется собственными значениями О. L̂, а их совокупность - спектром О. Спектр может быть непрерывным или дискретным; в первом случае уравнение, определяющее ψ n, имеет решение при любом значении λn (в определённой области), во втором - решения существуют только при определённых дискретных значениях λn. Спектр О. может быть и смешанным: частично непрерывным, частично дискретным. Например, О. координаты и импульса имеют непрерывный спектр, а О. энергии в зависимости от характера действующих в системе сил - непрерывный, дискретный или смешанный спектр. Дискретные собственные значения О. энергии называются энергетическими уровнями.

Собственные функции и собственные значения О. физических величин должны удовлетворять определённым требованиям. Т. к. непосредственно измеряемые физич. величины всегда принимают веществ. значения, то соответствующие квантовомеханич. О. должны иметь веществ. собств. значения. Далее, поскольку в результате измерения физич. величины в любом состоянии ψ должно получаться одно из возможных собств. значений этой величины, необходимо, чтобы произвольная волновая функция (вектор состояния) могла быть представлена в виде линейной комбинации собств. функций (векторов) ψn О. этой физич. величины; др. словами, совокупность собств. функций (векторов) должна представлять полную систему. Этими свойствами обладают собств. функции и собств. значения т.н. самосопряжённых О., или эрмитовых операторов (См. Эрмитов оператор).

С О. можно производить алгебраич. действия. В частности, под произведением О. L̂1 и L̂2 понимается такой О. L̂ = 12, действие которого на вектор (функцию) ψ даёт L̂ψ = ψ'', если L̂2ψ = ψ' и L̂1ψ' = ψ''. Произведение О. в общем случае зависит от порядка сомножителей, т. е. 12 21. Этим алгебра О. отличается от обычной алгебры чисел. Возможность перестановки порядка сомножителей в произведении двух О. тесно связана с возможностью одновременного измерения физических величин, которым отвечают эти О. Необходимым и достаточным условием одновременной измеримости физических величин является равенство L̂12 = 21 (см. Перестановочные соотношения).

Уравнения квантовой механики могут быть формально записаны точно в том же виде, что и уравнения классической механики (гейзенберговское представление в квантовой механике), если заменить физические величины, входящие в уравнения классической механики, соответствующими им О. Всё различие между квантовой и классической механикой сведется тогда к различию алгебр. Поэтому О. в квантовой механике иногда называют q-числами, в отличие от с-чисел, т. е. обыкновенных чисел, с которыми имеет дело классическая механика.

О. можно не только умножать, но и возводить в степень, образовывать из них ряды и рассматривать функции от О. Произведение эрмитовых О. в общем случае не является эрмитовым. В квантовой механике используются и неэрмитовы О., важным классом которых являются унитарные операторы (См. Унитарный оператор). Унитарные О. не меняют норм ("длин") векторов и "углов" между ними. Неизменность нормы вектора состояния даёт возможность интерпретации его компонент как амплитуд вероятности равным образом в исходной и преобразованной функции. Поэтому действием унитарного О. описывается развитие квантовомеханической системы во времени, а также её смещение как целого в пространстве, поворот, зеркальное отражение и др. Выполняемые унитарными О. преобразования (унитарные преобразования) играют в квантовой механике такую же роль, какую в классической механике играют канонические преобразования (см. Механики уравнения канонические).

В квантовой механике применяется также О. комплексного сопряжения, не являющийся линейным. Произведение такого О. на унитарный О. называются антиунитарным О. Антиунитарные О. описывают преобразование обращения времени (См. Обращение времени) и некоторые др.

В теории квантовых систем, состоящих из тождественных частиц, широко применяется метод квантования вторичного (См. Квантование вторичное), в котором рассматриваются состояния с неопределённым или переменным числом частиц и вводятся О., действие которых на вектор состояния с данным числом частиц приводит к вектору состояния с измененным на единицу числом частиц (О. рождения и поглощения частиц). О. рождения или поглощения частицы в данной точке х, (х) формально подобен волновой функции ψ(х), как q- и с-числа, отвечающие одной и той же физической величине соответственно в квантовой и классической механике. Такие О. образуют квантованные поля, играющие фундаментальную роль в релятивистских квантовых теориях (квантовой электродинамике, теории элементарных частиц; см. Квантовая теория поля).

В. Б. Берестецкий.

Википедия

Оператор Лапласа

Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом   Δ {\displaystyle \ \Delta } . Функции F   {\displaystyle F\ } он ставит в соответствие функцию

Δ F = 2 F x 1 2 + 2 F x 2 2 + + 2 F x n 2 {\displaystyle \Delta F={\partial ^{2}F \over \partial x_{1}^{2}}+{\partial ^{2}F \over \partial x_{2}^{2}}+\ldots +{\partial ^{2}F \over \partial x_{n}^{2}}}

в n-мерном пространстве.

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции: Δ = div grad {\displaystyle \Delta =\operatorname {div} \,\operatorname {grad} } , таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля   grad F {\displaystyle \ \operatorname {grad} F} в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом Δ = = 2 {\displaystyle \Delta =\nabla \cdot \nabla =\nabla ^{2}} , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа симметричен.


Оператор Лапласа для вектора A = A x i + A y j + A z k {\displaystyle \mathbf {A} =A_{x}\mathbf {i} +A_{y}\mathbf {j} +A_{z}\mathbf {k} } :

Δ A = Δ A x i + Δ A y j + Δ A z k = ( 2 A x x 2 + 2 A x y 2 + 2 A x z 2 ) i + ( 2 A y x 2 + 2 A y y 2 + 2 A y z 2 ) j + ( 2 A z x 2 + 2 A z y 2 + 2 A z z 2 ) k {\displaystyle \Delta \mathbf {A} ={\Delta }A_{x}\mathbf {i} +{\Delta }A_{y}\mathbf {j} +{\Delta }A_{z}\mathbf {k} ={\biggl (}{\frac {\partial ^{2}A_{x}}{\partial x^{2}}}+{\frac {\partial ^{2}A_{x}}{\partial y^{2}}}+{\frac {\partial ^{2}A_{x}}{\partial z^{2}}}{\Biggr )}\mathbf {i} +{\biggl (}{\frac {\partial ^{2}A_{y}}{\partial x^{2}}}+{\frac {\partial ^{2}A_{y}}{\partial y^{2}}}+{\frac {\partial ^{2}A_{y}}{\partial z^{2}}}{\Biggr )}\mathbf {j} +{\biggl (}{\frac {\partial ^{2}A_{z}}{\partial x^{2}}}+{\frac {\partial ^{2}A_{z}}{\partial y^{2}}}+{\frac {\partial ^{2}A_{z}}{\partial z^{2}}}{\Biggr )}\mathbf {k} }

Лапласиан вектора - тоже вектор.